Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2021  |  Volume : 9  |  Issue : 2  |  Page : 117-121

Stability in erythrocyte fragility responses of hemoglobin genotypes exposed to nanosilver

Department of Physiology, School of Basic Medical Sciences, University of Benin, Benin City, Nigeria

Correspondence Address:
Dr. Ogechukwu Kalu Uche
Department of Physiology, School of Basic Medical Sciences, University of Benin, P.M.B. 1154, Benin City 300-001
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/njecp.njecp_7_21

Rights and Permissions

Background and Objective: Safety concerns have been expressed in the extensive applications of nanoparticles in nanomedicine and consumers' products. The aim of this study was to examine the impact of in vitro nanosilver (NS) exposure on erythrocytes membrane integrity during osmotic fragility (OF) reactivity in different hemoglobin genotypes (HbAA, HbAS, and HbSS). Materials and Methods: Blood sample was collected from 45 consenting male and female participants' age 20–30 years; comprising 15 (HbAA, HbAS, and HbSS). Red blood cells were separated, washed, and divided into three sets with each sample treated in triplicate with graded percentage concentrations of NaCl (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9). Two sets of the blood samples were preincubated with 1 ml and/or 2 ml of 10 ppm NS and 0.9 normal saline for 1 h, while the other set was exposed directly to access the capacity of erythrocyte hemoglobin genotypes to withstand osmotic stress. The absorbance from supernatants was recorded after 30 min incubation with standard spectrophotometer at 540 nm wavelength. The mean values of percentage hemolysis were plotted against the different NaCl concentrations. Results: The results showed that there was no significant difference (P < 0.05) in the OF response curves and mean OF (MOF) indices (concentration of the solution when 50% of the cells are hemolyzed) in the different genotypes. The MOF concentrations of the three genotypes were in the order: HbAA > HbAS > HbSS. The relative capacity of NS to stabilize erythrocyte membrane in the three genotypes was in the order HBSS > HBAS >HBAA. Conclusion: There was no undesirable NS effect on the erythrocyte OF responses in the different hemoglobin genotypes but a greater membrane stabilization effect in the HBSS.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded57    
    Comments [Add]    

Recommend this journal